## No fast reactor, no survival beyond 21<sup>st</sup> century

Let's talk on fast reactors toward our future

December 11<sup>th</sup>, 2009 Main Hall, Plaza-Bansho, Tsuruga

Yumi AKIMOTO President, Japan Atomic Energy Relations Organization

#### Civilized societies evolve with energy



Reference: National Institute for Research Advancement "Considerations on Energy"

2

## Evolutions of CO<sub>2</sub> emission from fossil fuel and atmospheric concentration of CO<sub>2</sub>



| Two options toward independent civilized society             |                                                                                  |  |
|--------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| Two approaches for clean electricity source                  |                                                                                  |  |
| Solar origin energy                                          | Terrestrial energy                                                               |  |
| Solar heat - photovoltaic<br>hydro - wind                    | Geothermal<br>(decay heat of radioactive isotopes)<br>Nuclear (fission) (fusion) |  |
| Huge amount<br>Low density high power<br>fluctuant-irregular | Inexhaustible (E=mc <sup>2</sup> )<br>High density high power<br>Stable          |  |
| Collection&storage to improve in EPR index                   | Confinement technique<br>and social comprehension                                |  |
| Distributed electricity source                               | Backbone electricity source                                                      |  |

#### Fluctuation of photovoltaic and wind power generations



& brochure of Federation of Electric Power Companies
 & Horikappu Power Station, Hokkaido Electric Power Co., Inc.

5

## Kurobe dam



#### Estimations of power generation methods in EPR index



EPR(Energy Profit Ratio) = Energy output ÷ Energy expenditure

Reference : "CRIEPI News No.439" from Central Research Institute of Electric Power Industry 7

#### Ancient radioactive waste as our resource Terrestrial energy



#### reduction of radioactivity



| Terrestrial energy<br>Long-lived radioactive elements |         |                                 |                    |                  |
|-------------------------------------------------------|---------|---------------------------------|--------------------|------------------|
| Nuclear                                               | species | Half time                       | Abundance<br>ratio | Nuclear<br>decay |
| thorium                                               | 1-232   | 14 billion years                | <b>~</b> 100%      | α                |
| uranium                                               | າ-238   | 4.5 billion years               | 99.3%              | α                |
| uranium                                               | າ-235   | 0.7 billion years               | 0.7%               | α                |
| potassiu                                              | ım-40   | 1.3 billion years               | 0.01%              | β                |
| plutonium-239                                         |         | plutonium-239 24 thousand years |                    | α                |

## Civilized society cannot survive without new paradigm technologies



#### CO<sub>2</sub> emission of electric sources



Reference : Central Research Institute of Electric Power Industry

- "Evaluation of Electric Generation Technologies by Lifecycle CO<sub>2</sub> Emission" (March, 2000)
- "Evaluation of Nuclear Electric Generation Technology by Lifecycle CO<sub>2</sub> Emission"(August, 2001)

## CO<sub>2</sub> emission reduction by nuclear power



Reference : Preliminary Calculation by Federation of Electric Power Companies

# Current status of new energy sources v.s. potential of nuclear energy

|                       | nuclear                                                                     | Photovoltaic                      | Wind                                                              |
|-----------------------|-----------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------|
| Power generation cost | JPY 4.8~6.2/kWh                                                             | JPY 46/kWh                        | [large]<br>JPY 10~14/kWh<br>[medium-small]<br>JPY 18~24/kWh       |
|                       |                                                                             | Supposed to ge                    | enerate million kW                                                |
|                       |                                                                             | (≒ 1 nuc                          | lear station)                                                     |
| Required site area    | Total:0.6km <sup>2</sup><br>RV and turbine<br>uildings:0.012km <sup>2</sup> | ~67km²<br>≒lake Toya<br>(70.7km²) | ~ 246km <sup>2</sup><br>City of Otaru<br>(243.13km <sup>2</sup> ) |
| Utilization factor    | Japan:70%<br>U.S, Germany,<br>Korea:90%                                     | 12%                               | 20%                                                               |

Reference : Calculated based on "Atomic nation Plan" (Aug., 2006) by Agency for Natural Resources and Energy 13



## Change of uranium fuel by burnup in LWRs



## Quintuple walls confining radioactivity



#### LWR is "The Little Match Girl"



### LWR nuclear fuel cycle



### Achieved plu-thermal in the world



Note 1:Japan conducted plu-thermal also in Fugen with 772 subassemblies(March 2003) Note 2:MOX fuels are installed at Dec. 2007 in France(20 units), Germany(10 units), Switzerland(3 units), Belgium(2 units) and U.S.A(1 unit)

#### Suppression of surplus plutonium by plu-thermal Plutonium balance



#### Fast neutron and thermal neutron

#### Fast neutron

Generated neutron at the immediate aftermath of nuclear fission with a high velocity ■ ~14000 km/sec (1MeV)

#### Thermal neutron

Neutron with decreased velocity by collisions with water and graphite, etc., to facilitate nuclear fissions of uranium-235

~2.2 km/sec

#### FBR to convert "wet firewood" into energy



## Effective use of uranium resource

| Reactor type                       | Utilization<br>efficiency |                                                         |
|------------------------------------|---------------------------|---------------------------------------------------------|
| LWR (note1)<br>(once through)      | 0.5%                      |                                                         |
| LWR<br>(plu-thermal)               | 0.75%<br>(Note 2)         |                                                         |
| FBR                                | ~60%                      |                                                         |
| Note 1: w/o rec<br>Note 2: one-tim | ycling<br>ne recycle      |                                                         |
| Exclusive use of                   | uranium-23                | 5 Use of uranium-238 through<br>conversion to plutonium |
|                                    |                           | Reference Atsuyuki Suzuki "plutonium"                   |

#### First commercial reactor of each country

U.S.S.R Obninsk 5MW 27 Jun. 1954
 graphite moderated heavy water cooled

France Marcoule G-1 5MW 06 Jan. 1956 graphite moderated gas cooled

 U.K. Calder Hall 60MW 23 May 1956 graphite moderated gas cooled

U.S.A. Shippingport 50MW 02 Dec. 1957
 Pressurized light water cooled



Fast reactors sacrificed by political fights in countries

U.S.A.:Carter administration's plutonium moratorium

Germany: Nuclear abolition policy of Social Democratic Party & Green Party

French: Green Party's abrogation of Superphenix by decree of minister of environment

## JAEA's Tokai reprocessing plant



### JAEA's Tokai plutonium fuel test building



#### Comprehensive strategy for sustainability-centered development

|                                                  | Conventional concept                                                    | Sustainable concept                                                            |
|--------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Resource<br>and                                  | <ul> <li>abundant acquirement and use of<br/>energy resource</li> </ul> | <ul> <li>energy resource utilization without<br/>adverse legacy</li> </ul>     |
| environment<br>factors                           | •priority on cheaper energy                                             | •planned use of limited resource                                               |
|                                                  | <ul> <li>"therapy deal" environmental<br/>measure</li> </ul>            | <ul> <li>minimize environmental impact of<br/>resource exploitation</li> </ul> |
| Development<br>policy of<br>advanced<br>reactors | •priority on reactor performance                                        | priority on consistency with backend                                           |
|                                                  | cost competition with LWRs                                              | compensation of LWR's defects                                                  |
|                                                  | recycling as an adjunct of reactor                                      | reactor as a element of fuel cycle                                             |
|                                                  | technology                                                              | unified development of cycle and                                               |
|                                                  | •separate development of fuel cycle                                     | reactor                                                                        |
| International cooperation                        | •embargo on information export for                                      | <ul> <li>information share for common interest</li> </ul>                      |
|                                                  | national interest                                                       | sped-up development, cost saving                                               |
|                                                  | country-by-country development                                          | <ul> <li>internationally cooperated development</li> </ul>                     |
|                                                  | strategy and structure                                                  | strategy and structure                                                         |

#### Radioactive waste reduction by FBRs

FBRs have potential in volume reduction of high-level radioactive waste jointly by minor actinide (Np, Am, Cm) recycle and high thermal efficiency. (Further reduction is possible if separate disposal of heat generating FPs will be put into practice.)



Utilizable years of repository (years)\*

Stands for period to saturate repository volume for 40,000 vitrified pieces, assuming total installed nuclear power as 58GWe,

#### Nuclear fuel cycle

FBR's advantage (breeding, multiple plutonium recycle, easing HLW disposal).... Complementing LWR system

